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The paper considers the problem of designing a control u(¢) which takes a
linear system to an equilibrium stste under the condition that a given con-
trol intensity 1s a minimum.

1. Conslder the control system
dx/ dt = Az + Bu (1.1)

Here x 1s an n-vector of the phase coordinates {x;} of the system, y 1s
an r-vector of the control forces {u,}, 4 and p are the (n X n) and (nxr)
matrices {g,,} and {bp,,}, respectively. Let there be given an initial state
x° of system (1.1), a designated time interval 0 <t < T, a selected class
U of functions u{¢), and an estimate of control efficiency e[u(r)](0<r<7).

The problem consists of choosing the control u® (¢) which takes system
(1.1) from the state x(0) = x° to the state x(T) = 0 and which satilsfies

condition t [u° (v)] = min, & [u (1)] for  from 17 (1.2)

The problem being considered is related 'to a group of optimum control
problems and can be solved by one of the well-known methods in the thecry
of optimum processes, which have been worked out with sufficient completeness
for the linear systems{1.1). Replacing ¢ by —¢, the conditions of the
problem can be transformed so that x{(0) = O, x(T) = x°. We shall discuss
precisely such a problem.

Let g,,(¢t) be the elements of the fundamental matrix r(¢) of the solu-
tions of the homogeneous system (1.1). The coordinates x,(T) of the motion

of (1.1) T

2 (1) = § &9 (©)eu (v) dv

n

Zfik(T—T)bkj} (i—i""'") (1.3)
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are convenlently interpreted as the values of the lineur functional
N (1)) O<TKT) 2 (T) = nu [AD (1)) (i=1,....n)  (L.4)
generated by the vector-function
w () ={u () O<T<T i=1....n

Here the symbol A(r)-u(r) denotes the scalar product of the vectors
{ny(r)} and {u,(7)} . Then, the control problem reduces to the problem [1]
of constructing the functlonal n? generated by the function u°(T) and
satisfying conditions (1.2) and (1.4). This probtlem can be treated as a
problem of moments, or as a game, or as a problem of set separation, etc.[2].
Such an approach to the control problem was proposed in paper [3]. The inter-
pretation of the contol problem as a propblem in functicnal analysis 1is
encountered 1in various forms in a number of papers. One such approach to the
problem 1s also described below; the optimality criterion which is intro-
duced 1s not essentially new as compared with the one in [ 2], however, the
form of the criterion presented here has certain useful features.

Let us choose the function gy (1) (0 < T <T) from those classes U,
which generate the llnear functionals

nu th @) =\ (@)-u (@) dr

on the vector function a(r) for some gormed functional space {r(r)} with a
certain norm p[h(T)]. The norm of the functional n“[h(T)] will be denoted
by the symbol p*[y] . The estimate g[y] selected for the control problem
should be meaningful for functions y(r) from ¢ . Further, we shall assume
that the following conditions are satisfied.

1) The estimate ¢g[y] 1s pcsitive when p*[u]> O and the magnitude of
p*{u] 1s uniformly bounded

p* [ul < N (B) when & |u] =3 rforail B>0(£[0]=0) (1.5)
2) For any number g > O , if at the elements A(r) satisfying the
condition Nu [ ()] <P for all u from § [u] = B8 (1.6)
the relation
supa (Mus [2 (1)) = B (1.7)
1s satisfied, then the inequality £ [u*] < ﬁ (1.8)
is valid.
To solve problem (1.2), (1.%) we should consider the set Eg of elements
n(r) of the form n
k() =2 b (v) (1.9)

i=
which satisfy condition (1.6). Let us assume that for every B 1in the inter-
val O < g < B,, under conditions (1.6) and (1.9), the quantity o = l-x°
has a finlte positlive maximum

a () = max [-2° (1.10)
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The symbol hB(T) denotes the element

ks (1) = i L () kY (v) = Eg (.11)
at which this maximum is attainédi—lLet the number o< B, satisfy the equa-
e a(B°) = p° (1.12)
and, moreover, @ (B)> P for 0<B<p° (1.13)

Then there exlsts the optimum control u°(r) and this control satisfies
the condition

(1.14)
N° [2° (7)] = max, (gu [£°(7)]) = B° for E[u]=B° (A°(v)=hge(v))
Indeed, in the space {Aa(r)} let us consider the convex sets
H =3 1h® (v) when o1 =p} (1.15)
i=1
E = {n, [ (v)] CB° for all u from & [u]=P) (1.16)

Because of (1.5) the set £ contains the e-neighborhood of the null ele-
ment A(r) = O, where ¢ < g°/¥(g°) From the definition of the number
al{g) in (1.10) and because of equality (1.12), the internal elements A(7)
from the £ 1in (1.16) are not contained in the x in (1.15). Consequently,
the sets yF and g satlsfy the conditions under which the theorem on the

separability of subsets ([1], pp. 443-447) can be used. On the basis of this
theorem there exists a linear functional

T

n° e @1 =\ k(). (v) dr (1.17)

which satisfies conditions ’
M.° [A (v)] = B° for k(v) from H (1.18)
n.° [k (1)1 < B° for h(v) from E (1.19)

The function °(t) in (1.17) is just an optimum control. In fact it
follows from (1.15) and (1.18) that
nuo [h(i) (1;)] = xio (i=1,...,n)

i.e. condition (1.4) 1s satisfied. Moreover, from (1.6) to (1.8) and (1.10)
to (1.12), (1.15), (1.16), (1.18) and (1.19) it follows that

E [u®] < B° = a () (1.20)

There cannot exlst a control u*(’r) which would solve the control problem

for g[u*] = B* B° . Indeed, if we assume the contrary, then from (1.4),
(1.10) and (1.11) it follows that

Nue [A* (V)] = a (B*) (> = hg) (1.21)
But »*(r) is contained in KEjp« and, consequently, by (1.6) we should have

Nur [A* (7)) < & [u*] = B*. This inequality and equality (1.21) contradict

(1.13). Now, by the definition of n°(r), (1.1%) follows from (1.15),(1.16),
(1.18), (1.19) and (1.20).
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Thus, the control u°(¢) which has been constructed 1s really optimum and
satisfies condition (1.14).

Note 1.1 . An analysis of the reasoning presented above shows that
for the given optimality criterion to be valid it suffices for (1.5) to be
satisfled only for B = 8%, since this condition is required only so that
t?e)set F in (1.16) may contain the e-neighborhood of the null element
hit) = 0.

2. The form of the optimality criterion as stated in Section 1 is useful
for the following reason. Here we do not require an a priori choice of the
basic normed space {hn(r)} so that the quantity g[y] defines the norm of the
linear functional n“[h(w)] on precisely thils space, but we need only find
the set Eg of elements n{1) of form (1.9) satisfying condition (1.6), 1.e.

condition T

J(Duo @ ) u@ar <l tor Ena=s eX)

=1
This can sometimes be done from a simpler consideratlon than the construc-

tion of an initial space {hn(r)} with norm p[A] which ensures the conditlon
p*u)] = g(u] . Let us investigate thls by means of an example.

Let i1t be required to take the system

de/dt = Az + bu (2.2)
to equllibrium, where x 1s a np-vector and uy 1s a scalar, under the con-
dition T

tu ()] = max[maxrcp “lu@l) e@|u (r)[dr]= min  (2.3)

where §(t) and o(t,y) are given functions, positive for 0 <Lt < T and
for y > O . We shall assume that the functions ¢(¢) and o(¢,y) are con-
tinuous at every ¢ , that the function @(¢,y) grows monotonously with y ,
and that 1im p(t,y) == as y -, o(t,0) =0 .

Note 2.1 . The assumption of continuity of the functions o(¢,y)
and *(t) is not necessary for carrying out the reasoning described below.
The functions o(t,y) and y(¢) may be discontinuous. It 1s important only

that the function w{t,gs) considered below have the needed measure propertiles
on the interval [0,7T].

Thus, we consider the problem of control under the minimality -condition
and the maximal value of the control force uf{z) and of the pulse of this
force measured in the scales of g(¢,|u}) and ¢(¢) . As the initial s,ace
{n{1)} let us choose the space of functions h(r) which are Lebesgue-integra-
ble on the interval 0 <; T 6; T. As the space U of functions wuf{r) let us
choose the set of measurable functions u(r) almost everywhere bounded on
[0,7] , since precisely such functions generate the functional n,[Aa(r)] on
the functions n(r) from the chosen space {a(t)} .

Here [1] p A= |4 (9)]de 2.4

[\]
p* [u] = truesup (ju (v)| for 0ST<ST) (2.5)
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The quantity g[u] in (2.3), for the chosen class [ of functions u(r)
in (2.5), has a meaning only if the quantity max,r on the left-hand side of
(2.3) 1is understood in the sense of a true sup_ ({1] p.115). The estimate
e[u] satisfies conditions (1) and (2). Indeed, the fulfillment of the con-
ditions e[y] > O when p*[u] > O and (1.5) is ensured by the properties
of the functions g(t,]ul) and ¢(¢) . We shall check fulfillment of con-
ditions (1.6) to (1.8). Let u*(7) be a function from U satlsfylng condition
(1.8) for the g£[y] in (2.3) and for p = g* . This signifies that

T

true sup @ (%, [u* () )=P%, (9 (@) [u* (1) |de<p*  (26)

or Y
T

VO @lu* @Idr =6  true supeo (5, [u* @WD<B*  (@.7)
°
Under the asssmptions, for g > O the function o{t,y) =8 has an
inverse continuous function y = w(¢,s), 1.e.

¢ to@p) =24 (2.8)

and for every £ & [0, T'] the function w(#,8) 1s a monotonously increasing
functlion of g . Let symbol u(¢,8) denote the function

1
v B =gup (2.9)
This function is positive and continuous for § > 0, 0 <t < T.

Let the function y*(¢) satisfy condition (2.6). TFor any small & > O ,
under condition (2.6), in the interval [0,T] there is a set Ag with the
measure u(ag) > 0, where @ (7, |u* (1)]) > p*— 8. On this set the func-
tion |u* (1)|= ® (r, ) satisfies condition © (t, 9) > o (v, p*) —e, and,
moreover, because of the continulty of the considered functions, ¢ - O as
6 - 0 . Let us construct the function A% (t) = P (T, ) sign u*: p (As)
when 1 1s from A, and R€(r) = 0 when + 1is outside bg - The function
he(T) is contained in the set F_ since for any function u(T) with true
sup- @ (v, |u (v) |) B, 1.e. for any function wu(r) with true

sup. (|u (¥)|/o (r, ) < 1,

the inequality
T

{r@u@dr<( Bp(mpo@p)/p@B)ldr<p  (2.10)

Ap
is valid, and here, if g*> g , then
T
She (v) u* (v) dv >S (Br (v, B*) [@ (t, B*)—el / n (As)l dv > By — % (2.11)
0 Ag

Since when ¢ - O we have x -~ O and B,>p , then from (2.10) and (2.11)
we conclude that when g*>pg , (1.7) is not satisfied.

Now let condition (2.7) be satisfled. Any function »(+) satisfying con-

dition lh (T)| =‘\P (1.’)
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is contained in EB since then

T T T
1§r@u@dr] <{o@ie @dr<B o {omiumia<s
0 ’ 0 0
But when h{rt) = y(r)sign u*(r) and when condition (2.7) 1is satisfied we
have r T
¥ (@) u* (1) [sign u* ()dr = (¥ (] u* ()| dr=P*  (242)
0 0
Hence it follows that (1.7) is still not satisfied. Thus the estlmate
glu] in (2.3) indeed satisfies conditions (1) and (2).

We shall assume that system (2.4) is completely controllable [4]. Then
the problem will have a solutlon.,

According to Section 1 we should investigate the set of functions k{7)
of form (1.8) which satisfy condition ‘2.1), and for g > O we should find
those values of },(p) for which (1.10) is realized. Condition (2.1) will
be satisfied only by such functicns A(r) in (1.8) which satisfy the condi-

t1
on S“‘—“B_@l R (v)|dr < 1 (2.13)
A
for measurable subsets A from [O0,7] satisfylng condition
[ 282y () dr = 1 (2.14)
A

in the case when these subsets.are contained in the interval [O,7].

However, 1if the inequality

T
S“’—“'%)Mdr<1 (2.15)
]

is fulfilled, then the A in (2.13) denotes the interval [0,77.

Hence it follows that the number o(g) in (1.10) can be determined from
conditions

a () = =5 (2.16)

7 () = min; maxa [S P—%E (é LAt (T) ’ dr] for [-2°=1
A i=1

where the set A satisfies condition (2.14) (or coincides with the interval
[0,7] if condition (2.15) is fulfilled). If the system is completely control-
lable, then the quantity y(B) depends continuously on g . Because of the

p operties of the function w(r,p) it follows from (2.16) that for suffi-
cliently small values of g the quantity gy(g) is arbitrarily small. But this
means that for sufficiently small values of g the lnequality a(B) > g 1s
satisfled. Conversely, for sufficlently large values of g the quantity
By(ﬂ) becomes arbltrarily large. Indeed, by assuming the contrary we can
obtain sequence g,~ = , 4, , and [1,(B,)] for which
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im { o (7, B | 3] b @) kO (1) [dv =N <00 for ks oo (217)
Ak i=1
would be satisfied.

If the measure p(a,) does not approach zero as x - «» , then the relation
(2.17) 1s nct possible in consequence of min. ® (¥, Px) — oo also by the
reason that under the conditions of complete controilability

n
min S |2 L (Br) B (x) |d1.'> g (@) >0 for l.2°=1
A i=1
uniformly for all o from ([O0,7], satisfying the condition u(a) > x> O .
However, if p{a,) - O , then when (2.14) is fulfilled, inequality (2.17)
5t1ll cannot be fulfilled since that would signify that

min max, { 3] & ) KO )] [$ (@) =0 tor 12—t (218)

but under the conditions of complete controllability of system (2.1), (2.18)

cannot be satisfled. Consequently, for large values of g the inequallty

G(B) < B 1s satisfied. But this means that there exists a number g° satis-

fying the conditions (1.12) and (1.13). Consequently, for the problem being

considered there exists an optimum control u°({¢) which is determined thus:
n

u°(t) = o (t, B°) sign (z Lor® (t)) for t-in A°
. i=1 (2.19)
u®t) =0 for t outside A’
Here 1,° and p° are solutions of problem (2.16) for the value g = g°
satisfying conditions (1.12) and (1.13).

Problem (2.16) can be solved numerically by descent along the magnitudes
{1,} since in a wide class of cases the set in (2.1%) has a simple struc-
ture and consists of a small number of segments from [O0,T].

3, As an illustrative example let us conslider the problem of damping the
linear oscillator %—;:i-f— Pz — 1 (= const) (3'1)
within the time T of one period of 1its natural oscillatlions, T = 2rr/a«..
Let us here require the minimization of the quantity

T
max [max, u? (1), vS |u (v)] dt] = min,, (v >0 = const) 3.2)
0

Note 3.1 . As above we consider here, instead of the problem of damping
the system (3.2) from the state x(0) = x° to the state x(T) = 0, the prob-
lem of accelerating the system (3.2) from the equilibrium state x(o) =0

to the state x(T) = x°. The optimum control ° #) of the original problem
is obtained from the solution u°(t) of the auxiliary problem by transform-
ing the interval 0 <t <{T to the interval 0 <0 T by substitution

=T —1t.

In the form of system (2.1), Equation (3.1) 1is
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dz,/ dt = z,, dzg/ dt = — x?z; + u (3.3)
The fundamental matrix p(z) of system (3.3) 1s defined by the equality
— cosxt x7lsinxt
d (t) o {f” (t)} o (—usinm cos ut) (3'4)

In the given case the function w(z¢,p) 1s
o@p)=0@) =Vp (3.5)

Therefore, 1n the given case problem (2.16) reduces to the problem

7 () = min, maxy [§ _1_[_3‘ — i—‘sin ®T 4 I, cos u'r] d‘c] for litio -+ lawae =1

u (A) = min (Kv@, 3‘1) (3.6)

%®

The minimum in the left-hand side of (3.6) 1s reached under the condition

2
('%“) + 122 = min for 112710 + lgl‘zo: 1

l.e. when
2 I3
LB = mires O = mara (3.7)
AB) =(A () A, BN, 1 LEEE
— 2n B_ 2n
a @ =0, %] i VB 2
Here
Vs 5 VB]
[‘* tr o bt nt e
VB ‘ 3
[t*+ Uiy e i |
HLy0 . . T90
t* - ;, cos g. (n“rlo’+xm2)'/’ y sin g = (V’$102+23’o’)/'

The minimum y(g) 1s determined by the equalities

Veay . a
cos %t dt _ _4sin[x VB/4v] VB 2=n
YO =4 \ Vi ~ xVRomwran v S w (10
o
e 4,4\5»« cos xt dt 4 " E 2 (3.41)
. VB (%3x102 + Z20® % V|3 (#3z10® + 202 v -;(—

The number g° satisfying conditions (1.12) and (1.13) is consequently
determined as the smallest root of Equation

pr@) =1

where the function v{g) is defined by Equations (3.10) and (3.11).

(3.12)
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A graphical solution of Eguation (3.12) is shown in Pig.).
Thus, the optimum control u°(¢) has the form
1=t — g |<min[5F, %]
° _ RO o3 : for
u® (t) = VP° sign [sin % (¢t — t,)] on Ve gn
t——t*—-‘z? <m’-n v’

u® (t) = 0 for other ¢

Here the number ¢, 1s determined from the equality

HT10 x20

(¥2zge? + 3'202)1/' ' (#2z10? +- xmz)‘/z

Note .2 . In the case (3.8) if the point t < 0 falls inslde the
segment A;(B , then the part of thls segment corresponding. to the values
T < 0 1s carried over to the right inside [0,7] by the magnitude T of the
period; if however, in the case (3.8) the point r = T falls inside a,(g),
then the part of this segment corresponding to the values «+ < T is carried
over to the left inside [0,7] by the magnitude T of the perlod.

t*_—_——g, cos § = sin § =
%
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